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Abstract. We have developed a new approach for preoperative selection of points
from a surface model for rigid shape-based registration. This approach is based
on an extension of our earlier spatial-stiffness model of fiducial registration. We
compared our approach with the maximization of the noise-amplification index
(NAI), using target registration accuracy (TRE) as our comparison measure, on
models derived from computed tomography scans of volunteers. In this study, our
approach was substantially less expensive to compute than maximizing the NAI
and produced similar TREs with smaller variances. Optimal incremental selection
shows promise for improving the preoperative selection of registration points for
image-guided surgical procedures.

1 Introduction

A patient’s anatomy can be registered to preoperative 3D medical images for use in
image-guided surgery by digitizing anatomical registration points on the patient and
matching them to surface models derived from the images. We propose a method for
choosing model registration points from the preoperative medical image, based on an
extension of the method we described in Ma and Ellis [5] for fiducial registration. We
view the registration points as the points where an elastic suspension system is attached
to a rigid mechanism. By analyzing the stiffness matrix of the mechanism using the
techniques developed by Lin et al. [3], we are able to compute a stiffness-quality measure
that characterizes the least constrained displacement of the mechanism with respect to a
target. The analysis yields the direction of translation or the axis of rotation of the least
constrained displacement. The form of the stiffness matrix suggests a way to add a new
point to stiffen this displacement thereby improving the quality measure. An unresolved
problem is how to relate these preoperative registration points to anatomical registration
points derived from the patient.

2 Stiffness of a Passive Mechanical System

The background material, from the robotics literature, is mainly from Lin et al. [3] and
is a condensed version of one from our previous work [5]. This material is also related
to the compliant axes given by Patterson and Lipkin [9].

A general model of the elastic behavior of a passive unloaded mechanism is a rigid
body that is suspended by linear and torsional springs, which leads to analysis of the
spatial stiffness or compliance of the mechanism. For a passive mechanism in local
equilibrium, a twist displacement t of a rigid body is related to a counteracting wrench
force w by a 6 × 6 spatial stiffness matrix K:

w = Kt =
[ A B
BT D

]
t (1)
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where A,B, and D are 3 × 3 matrices. The twist is a vector t = [υT ωT ]T where
υT = [vx vy vz] is linear displacement and ωT = [ωx ωy ωz] is rotational displacement.
The wrench is a vectorw = [fT τT ]T where fT = [fx fy fz] is force and τT = [τx τy τz]
is torque. Equation 1 is simply a general, vectorial expression of Hooke’s Law. We can
obtain K by evaluating the Hessian of the potential energy U of the system at equilibrium
(Mishra and Silver [6]).

K is a symmetric positive-definite matrix for stable springs and small displacements
from equilibrium. The eigenvalues of K are not immediately useful because their mag-
nitudes change with the coordinate frame used to define K; however, it can be shown
that the eigenvalues of

KV = D − BT A−1B (2)

CW = A−1 (3)

are frame invariant. The eigenvalues µ1, µ2, µ3 of KV are the principal rotational stiff-
nesses, and the eigenvalues σ1, σ2, σ3 of C−1

W are the principal translational stiffnesses.
The screw representation of a twist is a rotation about an axis followed by a translation

parallel to the axis. The screw is usually described by the rotation axis, the net rotation
magnitude M , with the independent translation specified as a pitch, h, that is the ratio of
translational motion to rotational motion. For a twist (Murray et al. [7]) h = ω ·υ/‖ω‖2,
M = ‖ω‖, and the axis of the screw is parallel to ω passing through the point q =
ω × υ/‖ω‖2. A pure translation (where ω = 0) has h = ∞ and M = ‖υ‖, with the
screw axis parallel to υ passing through the origin. A unit twist has magnitude M = 1,
in which case, for ω �= 0, h = ω · υ and q = ω × υ. For a small screw motion with
M = α and ω �= 0, a point located at a distance ρ from the screw axis will be displaced
by length

l ≈ |α|
√

ρ2 + (ω · υ)2 (4)

Equation 4 is the basis of the frame-invariant quality measure for compliant grasps
described by Lin et al. [3]. Because the principal rotational and translational stiffnesses
have different units, they cannot be directly compared to one another. One solution is to
scale the principal rotational stiffnesses by an appropriate factor (see Lin et al. [3] for
details) to yield the so-called equivalent stiffnesses, µeq,i:

µeq,i = µi/(ρ2
i + (ωi · υi)2) i = 1, 2, 3 (5)

where, µi is an eigenvalue of KV with an associated eigenvector ωi, and ρi is the distance
between the point of interest and the screw axis of the twist [υT

i ωT
i ]T . The equivalent

stiffnesses can be compared to the principal translational stiffnesses which leads to the
stiffness quality measure Q = min(µeq,1, µeq,2, µeq,3, σ1, σ2, σ3). Q characterizes the
least constrained displacement of the mechanism. Therefore, maximizing the smallest
rotational and translational stiffnesses will minimize the worst-case displacement of the
mechanism.

3 Spatial Stiffness and Surface Registration

Our spatial-stiffness model of surface-based registration is parameterized by N surface
points with locations {pi} and unit normal vectors {ni} for i = 1, . . . N . Suppose
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Fig. 1. Two examples of the dot product dxy . (A) A point p on a circle in the xy plane and its
associated surface normal n. (B) The projection of p onto the xy plane; n is also projected but
then rotated 90◦ in the plane. The dot product of the two vectors shown is dxy = 0; p provides no
rotational constraint about the z axis. (C)A point p on an edge in the xy plane and its associated
surface normal n. (D) The projection of p onto the xy plane; n is also projected but then rotated
90◦ in the plane. The dot product of the two vectors shown is dxy = ‖p‖; p provides good
constraint about the z axis.

each point is displaced by a small translation δ = [tx ty tz]T and a small rotation
R = Rz(ωz)Ry(ωy)Rx(ωx). The locations qi of the displaced points are given by
qi = Rpi + δ. Because the displacement is small, we can take the region around each
pi to be locally planar. The squared distance to the point on the surface nearest to qi is
given by ((qi − pi) · ni)2. Assuming a spring constant of unity, the potential energy Ui

stored in each linear spring is Ui = 1
2 ((qi − pi) · ni)2. It can be shown that the upper

triangular part of the symmetric Hessian matrix Hi of Ui evaluated at equilibrium is:

Hi = H(Ui; υ = ω = 0)

=
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where pi = [xi yi zi ]T , ni = [nxi nyi nzi ]T , dxyi = [xi yi] · [nyi − nxi ], dxzi =
[xi zi] · [nzi

− nxi
], and dyzi

= [yi zi] · [nzi
− nyi

].
The dot products, dxyi

, dxzi
, dyzi

, have important geometric interpretations. For
example, dxyi can be computed by projecting the vectors pi and ni onto the xy-plane;
dxyi is the dot product of the projected pi and a vector in the xy-plane that is perpen-
dicular to the projected ni. An example of the dot products is illustrated in Figure 1. The
dot products can also be interpreted as the x, y, and, z components of the cross product
pi × ni.

The spatial-stiffness matrix for surface registration is:

K =
N∑

i=1

Hi =
N∑

i=1

[
Ai Bi

BT
i Di

]
=
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]
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In [5] we showed that aligning the centroid of the fiducial markers with the origin
results in B = BT = [0] which means that the rotational stiffnesses are decoupled
from the translational stiffnesses. Although in general this cannot be done for surface
registration or for stiffness matrices, Lonc̆arić [4] showed that one can almost always
choose a coordinate frame that maximally decouples rotational and translational aspects
of stiffness, and that B is diagonal in this frame.

In [5] we also showed that a single fiducial marker provided equal translational
stiffness in all directions. Inspection of Ai in Equation 7 shows that a single surface
point only contributes to the translational stiffness in the ±ni direction. Thus, at least
three surface points with linearly independent normal vectors are required to ensure that
the principal translational stiffnesses (the eigenvalues of A) are positive; the translation
component of the registration transformation is well-constrained only if all of the transla-
tional stiffnesses are positive. Also note that the translational stiffnesses are independent
of the locations of the surface points; only the orientations of the surface at the points
are relevant. Given this observation it is easy to see how to stiffen a displacement with
direction d: simply choose a point where the surface has normal direction most closely
aligned to ±d. Alternatively, apply a coordinate frame rotation so that d is parallel to
the z axis and find the point with normal vector that has the largest value of n2

z .
The analysis of the rotational stiffnesses is complicated by their being coupled to the

translational stiffnesses. Let us focus on the matrix D which relates torque to rotational
displacement. There exists a coordinate frame rotation that diagonalizes D because it is
a symmetric matrix. The eigenvalues of this diagonal matrix are equal to the diagonal
elements which are the squared dot products d2

xy , d2
xz , and d2

yz . Suppose we want to
stiffen the rotation about the z axis; this can be done by choosing a new point pi with
normal vector ni so that d2

xyi
is maximized. This leads to a heuristic for stiffening the

rotation about the least-constrained rotational axis: apply a coordinate frame transfor-
mation so that the axis passes through the origin and is aligned with the z axis, then find
the point with normal vector that maximizes d2

xyi
. This heuristic is not optimal because

it ignores the coupling with the translational stiffnesses, but it may work in practice.
Simon [12] derived an expression for what he called a scatter matrix, Ψ ; this 6 × 6

matrix characterizes the sum of squared distance errors between a surface and a set of
points from the surface displaced by a small rigid transformation. The expression for the
scatter matrix is:

Ψ =
N∑

i=1

[
ni

pi × ni

]
[
ni pi × ni

]
(8)

Expanding Equation 8 and simplifying terms yields exactly the same expression as the
stiffness matrix in Equation 7. An alternative and simpler derivation in the context of
mechanism stiffness is already known (Huang and Schimmels [2]).
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4 Strategies for Registration Point Selection

Simon [12] addressed the problem of choosing N points for registration by maximizing
the noise amplification index (NAI)

NAI =
λ2

min

λmax
(9)

where λmin and λmax are the smallest and largest eigenvalues of K. The NAI was
described by Nahvi and Hollerbach [8], and Simon [12] found that are there were four
important problems that must be addressed when using the NAI as a criterion for point
selection.

The first problem is that the units of rotational and translational displacement are
different. This means that the eigenvalues cannot be used unless they are scaled to
compensate for the differing units. Simon [12] addressed this problem by translating
the surface model so that its centroid was coincident with the origin, and isotropically
scaling the model so that the average distance between the origin and the surface points
was one. This solution is correct only for those scaled points that actually have unit
distance from the origin. For long thin bones, this results in the NAI being less sensitive
to rotations about the long axis of the bone.

The second problem is that K and its eigenvalues are dependent on the coordinate
frame; Simon [12] argued that the origin should be chosen to minimize λmin, although
he also noted that this did not result in large differences from simply centering the bone
at the origin. The third problem is that the eigenvalues of K, and thus the NAI, are
sensitive to variations in the normal directions of the surface points; Simon [12] was
forced to eliminate regions of high curvature from consideration for registration point
selection. The fourth problem is that maximizing the NAI is a problem with combinatorial
complexity; Simon [12] used hillclimbing and evolutionary techniques to solve this
optimization problem. These algorithms are too time consuming to use online, and are
not guaranteed to find the global maximum of the NAI.

Rusinkiewicz and Levoy [10] suggested choosing points so that the normal vector
direction was uniformly sampled. This heuristic is generally inapplicable for typical
surgical exposures. Recently, Gelfand et al. [1] suggested a technique called covariance
sampling that uses an eigenanalysis of K that is not frame invariant. Their stability
measure is the condition number λmax/λmin.

Our approach to point sampling is to build a point set with a greedy algorithm that
iteratively stiffens the least-constrained component found by the stiffness analysis of K.
Our algorithm can be described as follows:

– Manually choose an initial set of 6 registration points. We have found that the 3:2:1
fixturing concept (Shirinzadeh [11]) is a useful rule for choosing these 6 points.

– For i = 7, 8, ...N
• Compute the stiffness matrix K.
• Compute the quality measure Q.
• If Q corresponds to a translational stiffness

∗ Rotate the surface model so that least-constrained translational axis is par-
allel to the z axis.
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Fig. 2. Models, regions, and example point sets of size 15 used in our experiments. The proximal
femur with (A) points chosen using the NAI and (B) our algorithm. The proximal tibia with (C)
points chosen using the NAI and (D) our algorithm.

∗ Choose pi with ni from the rotated model such that n2
z is maximized.

∗ Undo the rotation applied to pi and ni.
• If Q corresponds to a rotational stiffness

∗ Translate and rotate the surface model so that least-constrained rotational
axis passes through the origin and is parallel to the z axis.

∗ Choose pi with ni from the translated and rotated model such that d2
xyi

=
([xi yi] · [nyi − nxi ])

2 is maximized.
∗ Undo the transformation applied to pi and ni.

5 Experiments

We conducted experiments using our algorithm and by maximizing the NAI for point
selection. We implemented the hillclimbing method described by Simon [12] for max-
imizing the NAI; we used the point set with the highest NAI after 10 restarts of the
hillclimbing algorithm and allowed the algorithm to converge before each restart.

We used both methods to generate point sets of size N = 6, 9, ..., 30. The running
time of our algorithm is between two and three orders of magnitude smaller than the next
ascent hillclimbing algorithm when run in Matlab on a SunBlade2000 workstation; all
of the point sets for our experiments could be generated in approximately forty seconds
when using the stiffness-based algorithm.

We used surface models of the proximal femur and the proximal tibia derived from
CT scans of volunteers. For the femur, we chose points from the region surrounding the
greater trochanter; this region was similar to the one we have used for several clinical
cases of computer-assisted bone-tumor excisions. We used the location of a tumor from
one of our clinical cases as the target; this point was located inside the neck of the
femur. For the tibia, we chose points on the anterior and lateral surfaces consistent with
the surgical exposure of a closing-wedge high tibial osteotomy. We used a point on the
proximal medial side of the tibia as a target; this is a point on the hinge of osteotomy.
The models, regions, and examples of point sets are shown in Figure 2.

To each point set we added noise drawn from the normal distribution with mean zero
and standard deviation 0.5mm, and then applied a rotation of 1◦ about a random axis and
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Fig. 3. Results for the proximal femur. Dashed lines are results using the NAI and solid lines are
results for our algorithm. (Left) Mean TRE versus number of points; error bars are at ±1 standard
deviation. (Middle) Standard deviation versus number of points. (Right) Maximum TRE versus
number of points.

Fig. 4. Results for the proximal tibia. Dashed lines are results using the NAI and solid lines are
results for our algorithm. (Left) Mean TRE versus number of points; error bars are at ±1 standard
deviation. (Middle) Standard deviation versus number of points. (Right) Maximum TRE versus
number of points.

a translation of magnitude 0.5mm along a random direction; the point set was registered
to the model using ICP and the TRE was computed. This process was repeated 500 times
for each point set. The displacements we used were small because both our analysis and
the NAI are based on the assumption of small displacements. The results are shown in
Figures 3 and 4.

6 Discussion

Our heuristic algorithm, based on the stiffness quality measure, appears to perform as
well as maximizing the NAI in terms of the mean TRE, and slightly better in terms of the
maximum and variance of the TRE, for small displacements from the true registration;
more tests, on a wider variety of surfaces, must be conducted before one can be confident
in this conclusion. The behaviour of the TRE as a function of the number of registration
points is much smoother for our algorithm than for the NAI-based algorithm, in part
because the point set with N points is a superset of the one for N − 1 points when using
our algorithm whereas the NAI-based algorithm always computes an entirely new point
set. The most important advantage that our algorithm has over the NAI-based algorithm
is that our algorithm is fast enough for online construction of point sets.
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A limitation of our study is that the next-ascent hillclimbing algorithm is not guar-
anteed to converge to the global maximum of the NAI: the optimization of the NAI is a
serious challenge for any algorithm that attempts to use it as a point selection criterion.
Also, we have not shown that our point-selection scheme improves registration accu-
racy in practice, because our analysis of the matrix K is limited to small displacements
around the true registration. Simon [12] has provided empirical evidence that increas-
ing the NAI by careful point selection tends to decrease the worst-case correspondence
error. Perhaps the major limitation of our study is that we examine model registration
points, whereas in practice a surgeon selects anatomical registration points; the critical,
and unresolved, difference between the two is that the correspondence between model
registration points and the model is known perfectly, while the correspondence between
anatomical registration points and the model must be inferred. We postulate that re-
solving this difference will result in an algorithm for optimally analyzing the quality
of a registration intraoperatively, and incidentally can suggest to a surgeon anatomical
regions that might incrementally improve a registration for image-guided surgery.
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